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The design engineer often finds himself in the situation where he is
sure about the mathematical description of a system but is uncertain
about the numerical values of the parameters. It is necessary in this
case that he determine the numerical values 6f the parameters from
observed data, a process known as "‘parameter estimation.’ Par-
ticularly as it relates to adaptive control systems, however, the pro-
cess is not a simple one; the estimation has to be continually up-
dated in the light of new observations. This requirement has led to
the development of recursive methods. This article, the first of two,
shows how recursive parameter estimation equations are obtained,
and how the equations may be modified to allow for the estimation
or “‘tracking’’ of possible parameter variations. The concluding arti-
cle will discuss the application of recursive least-squares-estima-
tion algorithms. It will explain why these algorithms are in an ideal
form for the on-line analysis of data, and will demonstrate how they
are used in the identification of dynamic processes from normal

(

., operating data.

Applying Parameter Estimation
to Dynamic Systems —part|

P. C. YOUNG, Naval Weapons Center

The basic problem in parameter estimation is de-
ciding the best way to use observed data to form
estimates of the unknown parameters. What is re-
quired immediately is a definition of what is ““best,”
in terms of the mathematical language in which the
estimation- problem has been posed. This is by no
means an easy thing to do since an answer depends
on the particular application under consideration,
However, in general, that estimate of the unknown
parameter vector will be selected which finds the
maximum or minimum of a chosen criterion func-
tion. Perhaps the best-known technique for finding
this parameter vector is the minimization of the sum
of the squares of the residuals or, as it is usually
called, the “least squares” technique.

Estimating a single parameter

For a body moving in a straight line with constant
velocity, the distance s, at time t, is related to the
velocity, o, by the equation

s =t 1

In practice, distance cannot be observed exactly;
there will normally be some unavoidable error.
Accordingly, what is actually measured is s*, where

S‘ =¥ + [ (2)
and e, are the random errors associated with the
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Table I. Observed Values of Distance and Time

distance, s*

(ft) 571 9 15 19 20 45 55 78
time, ¢

(sec) 0 1 2 3 4 10 12 18

(Note datum distance so is 5.71 ft)

measurement, Table I shows a set of observations
which, when plotted as shown in Figure 1, yields an
approximate straight line whose slope may be ex-
pected to be v. No straight line, however, will pass
exactly through all the data points because of the
measurement errors. The question then is;: Which of
the many straight lines that could be drawn through
the points will be the best representation of the data?
This is not an easy question, since an answer requires
a definition of what is “best” in the particular con-
text.

Probably the most straightforward method for
arriving at this definition is the least squares method
(Ref. 1). The basic procedure consists of taking an
estimate of the slope and minimizing the sum of the
squares of the difference between the ordinates of the
actual and estimated values. By differentiating the
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sum of squares function, the estimated slope can be
found analytically. Suppose there are k pairs of
values for two variables, x; and y;. If the variables
arerelated by a linear expression of the form:

Y =xa (3)

where x is exactly known, but the measure of y is
only approximate (y*), then:

Y=y+tg=xa+t+e G

The method of least squares requires that the esti-
mate 2 be chosen which minimizes the least squares
criterion function Ja:

k
h=3 ol =y ©)

Since J; represents a unimodal, or single minimum,
function in the criterion-function parameter space,
the solution is found by taking the gradient of J;
with respect to 2 and equating to zero:

8] k
Vi) = 37;’ =2 x{xa—y*) =0 (6
i=1

As a result, the estimate a; that minimizes J; after k
samples is given by

3 -t B
dk = (z Xg‘) Z x.-y;"' (7)
i=1 i=1
= piby
where
k -1
o= (_Elxc’)
and _

k
b= 3, xiy*
i=1

The attractive feature of the least squares formula-
tion is its basic simplicity; it is particularly straight-
forward in theory and easy to handle in practice.
Other criterion functions, such as the least magni-
tude

k
h= zl lx‘a - y‘*la
§ =

could also be used, but they are less convenient.

For parameter estimation a recursive form of
Equation 7 is needed in which the estimate at the kth
instant is a linear sum of the estimate at the previous
(k — Dth instant plus a corrective term based on the
data at the kth instant. The relationships given in
Equation 7 can be written in the alternative form,

k
= Zl Xt = gt + ! ®
i =

and

13
be = 3, xip* = bea + u &)

i=1
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Table il. Weighting Functions

D M D D P4 Ds Ds 44

Stage-
wise 1 0.2

0.0714 0.0330 0.00769 0.00364 0.00167

D=
100.0 0.99 0.199 0.0714 0.0332 0.00769 0.00364 0.00167

D=
1.0 0.50 0.1667 0.0667 0.0323 0.00763 0.00364 0.00617

Rearranging Equation 8:
D1 = Px + DeXaP-1
and

DXy = DiXe + pxatpe1 = pill + pera®)  (10)

so that:
P31 + peaxe®™ = prxe
I\{ow, multiplying by pr-1x; and using Equation 10
gives:
P11+ paxa®)™! = Puxsioe1 = po1 — B
Consequently,
Pr = P — P %X 4+ peaxs®)? (I)

Then, substituting this result in Equation 7 and using
Equation 9:

& = [p-1 — D031 + e1xa ) Y(bir + x00*)
With
O = Pk—lbb—x
this expression can be expanded to yield:
8 = Gi1 — kilxidon — %) (Ib)
where

ki = pr-x(l + pr-1:H™? (Ic) _
Equation Ic can be written: i

ke = (VP x1 + praxi®)™?

so that by substituting for p,~! from Equation 8, the
following alternative definition of k,'is obtained:

ke = plpea™? + x6Y) praxa(l + pe-ixa®)™?

= pi(xe + xpeaxa)1 + peaxe®)t (1d)

= puxe
The estimation algorithm given by Equations Ia
through Ic or 1d is the required recursive version of
Equation 7. Since it is in this form, starting values
for a and p must be chosen. One approach is to com-
pute a, and p, from Equation 7. Another is to allow
a, to have some arbitrary initial value, say zero, and
set po to some large positive number. Although less
obvious, this second scheme yields asymptotically
equivalent results, provided po is chosen large
enough.

Equation Ia or its equivalent, Equation 8, shows
that p, is a strictly decreasing function of the number
of samples; so that as the estimation proceeds, the
weight attached to the gradient measure is reduced.
This meahs that large corrections are possible at the
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start of the estimation procedure, when the estimate
may be in gross error. Howeyer, as the estimation
progresses, the estimates will converge. Less and less
correction is warranted, since it becomes more likely
that the observed gradient is the result of measure-
ment noise rather than estimation error.

To see how the simple recursive least-squares
algorithm I works in practice, consider the moving
body problem mentioned earlier, and let y = s* — s,;
x = 1; a = v. Figure 2 shows the estimation results
obtained using the algorithm from initial conditions
@ = 0; po = 100 and & = 0; p, = 1.0. Also shown
are the results obtained from the stagewise solution
of Equation 7, While the results for p, = 100 are
virtually identical with the stagewise results, those
for po = 1.0 show some discrepancy. Thus the need
to choose large values for p, in order to ensure équiv-
alence. Table II gives the weighting functions, p,, for
this same example; note their strictly decreasing
nature,

Estimating multiple parameters

A more general problem is the estimation of the set
of n unknown parameters, a,, that appear in a linear
relationship of the form

Y=axi+ax+ ... + apxa

where, once again, the observation y* of y is ap-
proximate, or contaminated by noise, €,, while the
x; are exactly known quantities. In this case, the
minimization of the least-squares criterion function,

k n 2
ha B\ X xut - y.-*) an

requires that all the partial derivatives of .J, with re-
spect to each of the parameter estimates a, should be
set simultaneously to zero. Such a procedure yields
a set of n linear simultaneous algebraic equations
that are sometimes termed the normal equations,
and that can be solved for the parameter estimates
ay at the kth instant. In this case the least squares re-
sults can be obtained by using a vector-matrix
formulation. Thus, by writing Equation 11 in the
alternative vector form

y =xTa (12)
where
T = (axg ..... X)i;a=(ma ..... ay),
where T denotes the transpose of a matrix, J, can
be defined as
Jp & iZ’::l(x.-Tﬁ - y.-.")’ (13)

where
y* =xTa + €y (14)

Now the normal equations become

k k
Va(y) = (Z xl'er) - xy*=0 (15
=] i=]
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FIG. 1. In the case of a body moving with constant velocity,
time and distance should vary linearly, However, observed
values will not lie exactly on a straight line. An estimate of the
best fit can be found by using a least squares technique.
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FIG. 2. The accuracy of estimation can be improved with the
number of samples taken. The circles show points obtained by
a step-by-step solution of the basic least squares formula; the
other two sets of points are obtained by using the recursive
least squares equation. Where p, is large, the results agree with
the original formula.




where Vi(/;) denotes the gradient of J, with respect to
all the elements of 4. The solution to the equations
takes the form,

G = PiBy (16)
where P, is an n X r matrix and B, isan n X 1 vector,
and are defined accordingly.

The scalar relationships of Equations 8 and 9 of
the single-parameter example are now replaced by
the following vector matrix expressions:

Pyt = Py + X207 17
and
(18)

In order to develop a recursive version of Equation
16, premultiply Equation 17 by P, and then post-
multiply by Pi—, to give

By = By + xin*

Py = Pp + PxixiTPey (19)
Post-multiplying by x;:
Py, = Ppxs + Pexaxa™PriX
= Poa(l + %TPi1xs)
Then, post-multiplying by
(1 + %Py 1Xg) X4 Ppst
Py ixdl + TP aXal %5 Py = PpxixaTPiy
Finally, substituting from Equation 19:
Pi = Py — Pl + XTPioxi] %P (1la)

As in the single-parameter case (care being taken
to obey the rules of matrix algebra (Ref. 2)), the
following equivalent recursive equation is obtained
by substituting in Equation 16:

A

i = fp1 — Peoixil{l + XTPoixa) (0T fzoy — 3i*) (1Ib)
or
(IIc)

Equation set II constitutes the recursive form of the
least squares solution, Equation 16. Once again
it is necessary to specify starting values, The terms &,
and P,, having large diagonal elements, will yield
performances commensurate with the stagewise solu-
tion of the same problem (Refs. 2 and 3).

Another similarity with the scalar case is that
algorithm II can be interpreted as a special form of
gradient procedure. In this multiparameter case, the
instantaneous gradient, x,x;"8;— — Xi}&*, i a
vector. Thus, the scalar weighting factor is replaced
by the time variable weighting matrix P;. However,
the strictly decreasing nature and consequent smooth-
ing effect of this matrix is directly analogous to that
of px in the single input case.

In contrast to the scalar situation, algorithm II
does provide some considerable advantage over the
stagewise solution of Equation 16. In addition to
the now convenient recursive form, which provides
for a minimum of computer storage, the term
(1 + xx"Pix,) is simply a scalar quantity. As a

A = gy — Pk(xkx&'rﬁh—l — Xx¥i*)
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result, there is no requirement for direct matrix in-
version even though the equivalent classical solution
of Equation 16 entails inverting an n X 1 matrix.

To see how to use the recursive least-squares
algorithm II, consider a slightly expanded form of
the moving body problem discussed in the previous
section. Suppose that the datum distance, so, is
unknown, so that Equation 1 has to be written,

s = $ -+ vt

This equation can be written in the vector form of
Equation 12, where

xT =[1 {];aT = [so 0]

Consequently, the simultaneous estimation of so
and v by reference to the measurements s* represents
a two-parameter estimation problem that can be
solved in a least squares manner. Figure 3 shows the
estimation results obtained from algorithm II with
a, = [0]and

10¢ 07.
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Figure 4 provides the time history of the P matrix
elements.

Po==

Statistical regression analysis

The recursive least squares algorithm is a determin-
istic estimation procedure in the sense that it makes
no assumptions about the statistical nature of the
signals or the noise and does not provide any statisti-
cal information on the nature of the estimates. To
indicate how even the minimum of statistical infor-
mation can help to improve the algorithm, assume
that the measurement noise ¢, can be considered as a
zero mean independent, or uncorrelated, random
sequence with variance o2 Then the estimates are
asymptotically unbiased and the covariance matrix of
the estimation error at the kth instant, P,*, is directly
related to the P, matrix by the equation:

P* = E(&&T) = o'P;

wherea = a — a and E(") is the expectation operator.
Substituting this second result in algorithm II:

8 = i — Pra™xu(o® + kafﬁKk)_‘(thﬁb—l = »*) (L)

or, .
8 =8, — Plﬁ(l;rab-l — Xipi*)

while
P# = Pia® — Pr*xi(o? + xPiix) f® (i)

Algorithm III, which is a recursive version of the
well-known least-squares regression equations (Refs.
1 and 4), not only supplies the parameter estimates
at each sampling instant but provides an indication
of the accuracy of these estimates through the error
covariance matrix Py*. Py* behaves in a similar
manner to Py and is a strictly decreasing function of
the sample size. This property is a physical indication
that the estimates are statistically consistent; that is,
that their accuracy increases as more data is utilized.

(111b)
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FIG. 3. I both velocity and initial distance are unknown, the
moving body example becomes a two-parameter estimation
problem. Shown here are the results of successive estimation by
the recursive multiparameter least squares method.
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FIG. 4. A measure of the accuracy of the estimation is
provided by the size of the elements of the P matrix. For the
two-parameter moving body example, the elements become less
than 1.0 within five samples.
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Time variable parameter estimation

If a common factor of 1/k is introduced into Equa-
tion 15, then the terms

| T
% 2 X and 7 2 Xt
=] =1

represent finite-time averaging operations (Ref. 5).
This means that all data is weighted equally over the
observation interval of k¥ samples and there is an
implicit assumption that the parameters remain
constant during this period. In order to allow for
possible parameter variation, therefore, it is neces-
sary to modify the estimation procedure in some way.

Shaping the memory of the estimation scheme

One approach to the problem of detecting parameter
variation is simply to curtail the memory of the
estimation procedure in some manner so that as new
observations are included, the effect of earlier
observations is reduced. This can be done by re-
placing the finite time averaging operations by
exponentially weighted past (ewp) averages (Ref. 5).
This technique, which entails processing the data by
means of a discrete, low-pass filter with an exponen-
tial weighting function, requires replacing Equations
17 and 18 by the following (Refs. 6 and :

Pt = (1 — a)Piy™ 4 afxixiT] (21)
By = (1 — a)Biy + aofxpn*] (22)

where 0 < o « 1.0 represents a scalar weighting fac-
tor that specifies the length of the filter memory.
Using these equations, which simply represent dis-
crete, first-order, low-pass filtering operations on the
elements of x;x,T and x,y*, respectively, is equivalent
to minimizing a criterion function of the type
k

JEVE = ;31 (8 — yi*)X1 —a)ta (23)
This is simply the normal least-squares criterion
function modified by the exponential weighting
term (1 — a)*~'a. Figure 5 gives examples of this
weighting effect for ¥ = 10 and & = 0.1 and 0.3,
respectively. Proceeding now as in the time-invariant
situation, it is not difficult to obtain the following
recursive algorithm (Refs. 8 and 9):

~ a o -1
= 8-y — I—= Pls-lxk(l + 1—a x:.TPk_,x;,)

X s — »*) (IVa)

or
8 = 8y — aPu(xxiTApy — b (IVb)
while

1 -1

Py = T—= Py, — a—_aa—), Pb—lxk(l + 1 i P kaPb—lxb)
X xTPy, (IVe)
The physical effect of the factor « is simply to
prevent the P matrix elements from becoming too

small, so that new data continues to have some effect
on the estimates. In this way, any modification to the
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measured gradient caused by parameter variation
can be detected and used to update the parameter
estimates. Of course, this approach has the disad-
vantage that the effects of noise will also be detected
and used to modify the-estimates, Thus the estima-
tion scheme only functions satisfactorily if the
parameter variations are larger than the residual
fluctuations due to noise. In practice, « in algorithm
1V is better replaced by a time variable scalar a;
that is a strictly decreasing function of sample size
and tends to « as k tends to infinity:

a=af(l—(1—aF);k>1
Here o will normally need to be <0.1.

Modeling the parameter variations

The statistical interpretation of the least squares
equations discussed earlier suggests an alternative
method of detecting parameter variations (Refs. 2
and 3). For instance, suppose that any parameter
variations can be described by the discrete vector
equation '

a4 = Pl + Qry (24)

where ® = &k, k—1)isann X n transition matrix
(Ref. 10) and q4— is an 2 vector of independent
random variables with zero mean and covariance
matrix E(q.q,") = 08, where 8, the Kronecker

delta, equals
5{] =] (o’ i b j

1, i=j

which is uncorrelated with the measurement noise
(e;)r—1. When & = I, the identity or unit matrix,
then this model merely states that the parameters may
undergo random fluctuations q.— between samples,
the expected variance of these fluctuations being
defined by the diagonal elements of the covariance
matrix Q. In other words, the presence of q;—; intro-
duces a statistical degree of freedom to the para-
meter variation in Equation 24.

If something is known about the parameter varia-
tion—for example, that it is sinusoidal with a given
frequency—then a suitable & matrix can be selected
and used in Equation 24. In these circumstances a
simple statistical analysis of the modified estimation
problem (Ref. 3) yields a new least-squares regression
algorithm. The only difference between this new
algorithm and the basic least squares regression
(Equations III) is that the between-samples a,—; and
Py—* are updated to @3- and Py;—*, respectively.
Here

A = B, (25)

Pypa* = P y* + Q (26)

where a,,—; and Pyp—* are respectively the a priori
updates of 8, and P,—* at the kth instant, based on
the information obtained up to the (k — 1)th instant
and a knowledge of the parameter variation law,

Equation 24. In the absence of any evidence to the
contrary, @ is chosen purely diagonal with elements
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FIG. 5. For time-varying parameters, less weight should be
given to the earlier observations so that the parameter variation
can be detected. This can be done by weighting the least-
squares criterion function with a factor that acts in a manner
similar to a low-pass filter. Shown here are the exponential
weighting functions for a sample length & = 10 and two values
of the weighting factar, a. '

reflecting the expected rate of variation of the
parameters between samples. If there is no possibility
of random variation, then g, is zero and Q is remov-
ed from Equation 26.

By using a purely heuristic argument (Ref. 2), it
is now possible to consider modifying the simple
deterministic least-squares algorithm II in a manner
similar to that shown above. In the simplest and
most generally useful case, where & = I, we obtain
the following estimation equations:

) = fpy — Prle—ix(1 + kaPHh-xXk)"’(kaﬁk—l —»n*) (Va)
Pijga = Poa+ D (Vb)
Py == Prpa—s — Peli—X{1 + X Poja-sX1)~ X Pyjsa (V)

In these equations, D is a positive, definite and usually
diagonal matrix which is analogous in its effect to
the covariance matrix Q in the regression case. It
can be chosen initially by reference to the expected
rate of variation of the parameters and modified if
necessary in the light of experiment. In the case where
a parameter is constant, the corresponding diagonal
element of D should be set at zero.

In computational terms, the introduction of the D
matrix is similar in effect to the introduction of the
exponential data-weighting function; the addition
of D to P;-, at each instant introduces a lower bound
on the magnitude of the P matrix elements, pre-
venting them from getting too small. In general,
however, algorithm V is more attractive than the
equivalent exponential memory scheme since it is
rather simpler to implement and basically more
flexible. For instance, the choice of a random walk
model (i.e., ® = I'in Equation 24) is rather arbitrary;
in certain circumstances it may be more realistic
to specify other statistical models (Ref. 3). In order

CONTROL ENGINEERING

e



to emphasize this point, consider for the moment
the following very general model:

8 = 3 + Iqp,

where & is a known n X » transition matrix, T is
a known n X m matrix, and q,—, is an m vector of
independent random variables with zero mean and
covariance Q. In this special case, update equation
(26) in the regression case becomes:

Pip* = $p*13T + T OIT @7

A heuristic argument can once more be used to mod-
ify the deterministic least squares algorithm into
the following *“dynamic’ form:

@ = 5|1 — PalsXill + X:TPy)p-1x,]~2
{xaTdpp4my — »*] (VIa)
GE|k-1 = Dhp,y (VIb)
Di|i~1 = ®Pp1@T 4 PDIT (VIo)
Py = prjam1 — Pyja—sxifl + XiTPk |k~ 1X5] 1
XTPy -1 (VId)

where D is an m X m matrix selected by experiment
to allow for any random parameter variations not
accounted for in Equation VIb.

Note that this dynamic least squares regression
algorithm is a special form of the famous Kalman
filter-estimator equations (Ref. 11 and 13). In basic
terms there is no difference between the parameters
and the state of a process (Ref. 12). Segregation of
the two is often based on purely physical reasoning,
to the effect that the parameters are normally either
time invariant or only slowly variable while, by
comparison, the state is rapidly varying. This unified
concept of parameter and state estimation is empha-
sized in the simple moving body example discussed
earlier. Here the unknown “parameters” are actually
the states of a dynamic system.

Structural models

Up to this point only a particular form of linear
estimation model has been considered; namely, the
regression model, in which the variables associated
with the unknown parameters are exactly known
quantities. In practice a number of different estima-
tion models are encountered (Ref. 14), and the tech-
niques described here may need to be modified in
some way. This whole topic is discussed fully in a
book by Graybill (Ref. 15). Although Graybill’s
classification of the various models is open to ques-
tion, he does treat all the major possibilities in con-
siderable detail. In the present article, it will suffice to
mention one of the most important models met in
practical situations, the structural model (Ref. 1).
In the structural model, the basic relationship be-
tween the parameters is still in the form shown in
Equation 12. However, the elements of x are no
longer exactly known quantities and can only be
observed in error. In other words, the observed
value of x is x*, where
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xX*=x+ e,

and e, is a 1 vector of measurement noise associated
with the observation of x. In thijs situation, it can
be shown (Refs. 16 and 17) that the estimates ob-
tained via a least squares analysis are asymptotically
biased to a degree dependent upon the noise/signal
ratio on the observation x*. :

There are a number of ways of-solving the struc-
tural model problem (Ref, 18). If the noise statistics
are known a priori, then there is no real difficulty,
since it is possible to compensate directly for the bias
(Ref, 19). Another approach to the problem, at-
tractive because it does not require detailed informa-
tion on the noise statistics, is the “instrumental
variable” method (Refs. 2 and 17).
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